Definitions for "Attractor" Add To Word List
 Enter your search terms Submit search form
Keywords:
Related Terms:
In Maya Fur, a joint chain that attracts the hairs in a fur description. Attractors can be used to affect the movement of hair using dynamics and forces.
Region on the domain of a dynamical system that attracts all nearby states.
A fractal structure with noninteger dimensionality whose shape is shown in phase space and to which trajectories are attracted. In classical chaos theory, “an attractor is an invariant set to which all nearby orbits converge” (Devancy, 1989, p. 201).
The status that a dynamic system eventually "settles down to". An attractor is a set of values in the phase space to which a system migrates over time, or iterations. An attractor can be a single fixed point, a collection of points regularly visited, a loop, a complex orbit, or an infinite number of points. It need not be one- or two-dimensional. Attractors can have as many dimensions as the number of variables that influence its system.
An attractor is a trajectory of a dynamical system such that initial conditions nearby it will tend toward it in forward time. Often called a stable attractor but this is redundant.
An attractor of a map is a set of points which ``attracts'' orbits, from some set of initial points of nonzero probability of being selected. To be precise, an attractor of a map is an indecomposable closed invariant set with the property that, given , there is a set of positive Lebesgue measure in the -neighbourhood of such that if is in then the -limit set of orb() is contained in and the orbit of is contained in [ 10].
(physics) a point in the ideal multidimensional phase space that is used to describe a system toward which the system tends to evolve regardless of the starting conditions of the system
a model representation of the behavioral results of a system
a particular space to which a system converges, it can be compared with a dissipative structure
a point or area in phase space that seems to suck in the solutions of a non-linear system when the equation you are using for the non-linear system is iterated
a 'set', 'curve', or 'space' that a system irreversibly evolves to if left undisturbed
a set of measure zero but its basin of attraction has a non-zero measure
a set of points in the state space that the dynamic system converges toward as time approaches infinity
a single point, usually outside the bounding box, that the plant has a tendency to grow towards
a solution to a set of equations towards which a dynamical system tends
a state towards which a system is drawn
A point to which a system tends to move, a goal, either deliberate or constrained by system parameters (laws). The three standard attractor types are fixed point, cyclic and strange (or chaotic).
a set of numerical values toward which the result of an iterated function is drawn, or attracted
Dissipative dynamical systems are characterized by the presence of some sort of internal "friction" that tends to contract phase-space volume elements. Contraction in phase space allows such systems to approach a subset of the phase-space called an attractor as the elapsed time grows large. Attractors therefore describe the long-term behavior of a dynamical system. Steady state (or equilibrium) behavior corresponds to fixed-point attractors, in which all trajectories starting from the appropriate basin-of-attraction eventually converge onto a single point. For linear dissipative dynamical systems, fixed point attractors are the only possible type of attractor. Nonlinear systems, on the other hand, harbor a much richer spectrum of attractor types. For example, in addition to fixed-points, there may exist periodic attractors such as limit cycles. There is also an intriguing class of chaotic attractors called strange attractors that have a complicated geometric structure (see Chaos and Fractals).
A term used in modern dynamics to denote a limit towards which trajectories of change within a dynamical system move. Attractors generally lie within basins of attraction. Attractors and basins of attraction are essential features of the mathematical models of morphogenetic fields due to Rene Thom.
Dynamical equilibrium of a DS * Attracts all nearby points * Three types: static (point), periodic (cyclic), chaotic
A region in an outcome basin to which the dynamics of a system tends to take it. The size and shape of the attractor depends, sensitively, upon key parameters and the dynamics to which it is driven by such parameters. An attractor may occupy space between dimensions; if so, it is said to be a fractal.